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FOREWORD

This final technical report describes the re-
sults obtained by SIGNATRON, Inc. of Lexington,
Mass. on Air Force Contract F30603-80-C-0104 for
Rome Air Development Center. The objective of
this effort is to develop a technique for identi-
fying system response of nonlinear circuits by
measurements of output response to known inputs.

The SIGNATRON Project Engineer for the effort
was Dr. Michael Rudko. The project.was supervised
by Dr. Julian J. Bussgang.

The support and assistance provided by cogni-
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SECTION 1

INTRODUCTION

This report describes the results of a study into nonlinear

system identification techniques. The primary objective was to

refine previously proposed techniques and make actual circuit

measurement easier.

The need for nonlinear system identification is of impor-
tance because of the increasingly dense environment of present

and future Air Force communication systems. Accurate nonlinear

system identification would help in the accurate prediction of

such nonlinear effects as, for example, intermodulation and har-
monic distortion, thus leading to the determination of RF sus-

ceptibility of various electronic equipment.

A promising system identification technique known as the

pencil of functions method was originally proposed by Jain [1974]

and later applied by Ewen [1975,1979] to the identification of

the nonlinear transfer functions of a class of nonlinear sys-

tems. Ewen's identification was based on the fact that, for

lumped parameter circuits containing zero-memory nonlinearities

between circuit nodes, the nonlinear transfer functions have

poles which are uniquely determined by the poles of the linear

part of the circuit. Such nonlinear transfer functions can

therefore be identified by finding the linear transfer function

and thus its poles and then identifying the residues or zeros of

the nonlinear transfer functions.

Unfortunately, the identification technique, as proposed by

Ewen was not readily implementable in practice and numerous ques-

tions remained as to the appropriate parameters to be used and

the performance to be expected in a realistic, noisy environment.
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In fact, Ewen found that for a two pole system, his re-

quired sampling rate was 4 to 10 times the highest frequency of

the passband of the system. The sampling rate was found to rise

unreasonably high as the number of poles was increased. Ewen

concluded that current A/D device availability limited the band-

width of two pole systems that could be analyzed to 10 or, at

most, 30 kHz. As the number of poles increased, the sampling

rate requirements increased. Systems with more than two poles

required a sampling rate which exceeded the Nyguist sampling

rate. Thus, additional poles limited further the bandwidth of

the systems which could be identified.

Ewen noted that the fastest commercially available A/D con-

verter with 16 bit resolution had the capability of sampling a t

signal at* 125 ksample/sec. He concluded that, at least at

present, only two-pole systems with a maximum bandwidth of up to

10K or 30 kHz could be analyzed. For a 4-pole system, the reso-

lution required in an A/D converter is at least 24 bit per sample

at 125 ksample/sec in order to achieve a minimum performance.

This again indicates that at the present time, this type of non-

linear system analysis would be limited to two-pole systems.

The objective of our study was to solve the implementation

problems fouiic by Ewen. rhe organization of this report is as

follows: the problem is first defined in Chapter 2. The pencil-

of-functions method and Ewen's technique are then summarized in

Section 3.1. The identification parameters and practical diffi-

culties associated with Ewen's method are analyzed in Section

3.2. Based on these factors, Section 3.2 concludes with an out-

line of the detailed objectives of the present effort.

In order to meet these objectives, a new discrete iterative

identification technique is defined in Chapter 4. It has the ad-

vantage of being defined totally on discrete samples of the input

and output processes, thus eliminating a major difficulty asso-
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ciated with Ewen's approach which stems from the numerical evalu-

ation of repeated continuous integrals. Moreover, the new method
permits evaluation of the reliability of the identified unknown

poles by also identifying at each step the known input poles.

The distance between the identified input poles and the true in-

put poles is indicative of the accuracy of the identified unknown

system poles. In the identification of wideband systems, itera-

tion proceeds by starting with the identification of the lowest

frequency poles, then using previously identified lower frequency

poles as knowns to identify the next higher frequency poles.

The problem of identifying a system in the presence of

noise is examined in Chapter 5. The effects of noise are inves-

tigated and desirable identification parameters are specified us-

ing simulation results.

Results of simulations of the discrete iterative identifi-

cation procedure are presented in Chapter 6 for wideband and nar-

rowband systems containing up to four closely grouped noles. The

simulations were performed with varying levels of noise added to

the system output. The standard deviation of the noise ranged

from 0 to 5% of the maximum system output. The highest sampling

frequency used is not greater than the Nyquist rate. In all

cases the correct number of poles iwas identified. The average

error in pole location ranged from .9% for the noiseless case to

15% for additive noise with a standard deviation equal to 5% of

the maximum value of the system output. The feasibility of

achieving identification of this accuracy at sampling rates no

higher than the Nyquist rate, greatly simplifies future implemen-

tation. The new method substantially decreases the required

sampling rate and, because of the greater tolerance to noise, the

necessary A/D converter resolution.

Possible performance assessement criteria are outlined in

Chapter 7. Two types of criteria are possible. In Section 7.2,
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the accuracy of th~e identified poles and zeros/residues are as-

sessed directly. In Section 7.3, global measures of the accuracy

of the identified impulse response or transfer function are dis-

cussed. It should be noted that nonlinear transfer function

identification makes use of the results of the linear system

identification, but requires the additional identification of the

zeros/residues of the nonlinear transfer functions which was not

undertaken during the current effort. Thus, the impact of the

linear system parameter and global error measures on the quality

of nonlinear transfer function identification was not evaluated

in this study.

Finally, Chapter 8 summarizes the characteristics of the

discrete iterative identification technique and presents conclu-

sions as to its expected performance. The main characteristics

of the postulated technique are:

* Completely discrete formulation.

* Selective use of the knowledge of the input to
test for regions where poles are present and to
determine the reliability of the identified
poles.

* Iterative decrease of the sampling interval T.

* Use of previously identified poles as knowns in
the set defining the Gram determinant during the
identification of additional poles.

The advantages of the discrete iterative approach can be

summarized as follows:

* It does not require repeated integrations; in-
stead, time shifts are used.

1-4



" It permits the determination of regions where
system poles are present.

* It aids in determin'ig the number of poles being
identified.

* The accuracy of an identified input pole when it
is far from system poles gives a measure of the
best accuracy that can be expected.

* Identifying the input poles while using the iden-
tified poles as knowns gives a measure of the ac-
curacy of the identified poles.

" The use of identified poles as knowns is espe-
cially useful for wideband systems.

* Linear identification requires the measurement of
only approximately twenty output samples.

* The required sampling frequency is not higher
than the Nyquist rate.

Based on simulation results, it is conservatively concluded

that the method should be capable in practice of identifying sys-

tems containing separate groups of four or fewer closely packed

poles in the presence of additive output noise whose standard de-

viation is of the order of 1% of the maximum system sicnal out-

put. If the output noise is mainly due to quantization, this

should permit the use of 9 or 10 bit guantizers. The required

sampling frequency is approximately equal to the frequency of the

highest system pole. These values should permit a relatively

straightforward implementation.

1-5iJ



SECTION 2

PROBLEM DEFINITION

In the increasingly dense communications environment found

in many defense communication systems, it is of great interest to

be able to predict the amount of intermodulation and harmonic

distortion generated in these various equipments. This entails

accurate descriptions of the nonlinear characteristics of such

equipment.

In th.e case where the nonlinear behavior exhibits no jumps

or hysterisis, the nonlinear system can be represented by a Vol-

terra series. Its output y(t) due to excitation x(t) is then

given by

n1

y(t) = ) ... f h (u,...,un) x(t-u )duin~l -- -® i 1l 1 xt- 1u

(2.1)

=n yn (t)

n=ln

where, Yn(t) is the nth-order system output. The system is

then characterized, that is its input-output relation is com-

pletely specified by the nth-order impulse responses

hn(ul,...,un), n=l,2,...

If the system's nonlinearity is mild, the output is given

by the first few, predominantly three first terms of the series:

3
y(t) = Yn(t). (2.2)

n=l
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In order to characterize such a system, it is necessary to deter-

mine hl(ul), h2 (ul,u 2 ), h3 (ul,u2,u3 ) or. equivalently, the

higher-order transfer functions

HI(S) =£ [h,(U)]

H2 (SlS 2) f 2 [h 2 (u 1 ~u9] (2.3)

H3 (sl,s 2 ,s 3 ) E £3 [h3 (u1,u 2,u 3 )]

where £n denotes n-dimensional Laplace transformation.

This problem is, in general, extremely complex since it in-

volves the determination of multidimensional functions. It has,

however, been shown that, in the case where the nonlinear system

is a lumped parameter circuit with zero-memory nonlinearities be-

tween circuit nodes, the equivalent 2nd and 3rd-order transfer

function poles can be obtained from the poles of the linear

transfer function [Graham and Ehrman (1973); Ewen (1975)].

More precisely, let the transfer function of the linear

part of the system be given by

M
n (s+qi)i =1

H1 (s) = N M<N

n (s+pi)
i=l (2.4)

N R.

i=l s+Pi

where, -ql,-q 2
' ' '- q M ; -Pl'-P2' ' ''- p N ; RI'R 2 ' ... , RN, are,

respectively, the zeros, poles and residues of the transfer func-

tion and it has been assumed for notational simplicity that the

poles are distinct.

Then, the 2nd and 3rd-order transfer functions are given,

respectively, by [Ewen (1975)]
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L N S+S2+ k*2
k1 =1 k 2 =1 A 1k2  1 2 k +ak Jts 2 +ak J sl+ak

(2.5)

1 J L N Ck 1k 2k 3

HI I 1

k 1 1 k = 1k 3 T'~s2+3 + k 1 ak 2+ak3

1 1

(sl+ak 3ISl+S3+(ak a + (s 2 +ak3)(sl+s2 +lak +ak3)
3 2 "3 3 2 3

+ 1 + 1
(sl+ak " Sl+S2 +(ak +ak) + ( 3 +ak Is2 

+ S3 +(ak+ak3

+1 +1

[ s 2 +ak3 js 2 3 + ak2+k + 1 s 3 +ak3 [si53+[ak2+ak3

3 2 3 3 2 3

where, the quantities J, L, akl ak are uniquely determined

by the poles of the linear transfer function Hi(s). The com-

plete identification of the nonlinear transfer functions of the

system requires, therefore, the identification of the linear
transfer function and the determination of the constants
Aklk2, Cklk2k3 for the permissible values of kI, k2 , and k3.

The poles of the linear transfer function thus play a cru-

cial role in the identification of the linear and nonlinear parts

of the system. They not only specify the denominator of HI(s)

but linear combinations of these poles determine the poles of

H2 (S1 ,S2 ) and H3 (sls 2,s3 ).

2-3



In the next section, an identification technique, known as

the pencil of functions method, developed by Jain [Jain (1974)]

and applied by Ewen (Ewen (1975), (1979)) to the above problem is

presented. The critical parameters of the technique and the

practical difficulties involved in applying it are isolated and

analyzed. An efficient and practical method for the identifica-

tion of the poles of a linear system is then developed and illus-

trated by simulation examples.

2
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SECTION 3

PENCIL OF FUNCTIONS METHOD

3.0 Summary of the Method

A promising technique for determining, from input/output

measurements, the poles of the transfer function of a linear sys-

tem has been developed by Jain [1974]. Known as the pencil of

functions method, this technique was then applied, by Ewen [1975,

1979] to the identification of the 2nd and 3rd-order transfer

functions of a Volterra system. We next outline the pencil of

functions method as originally presented by Jain and used by

Ewen. This technique was the starting point of the present con-

tract. Subsequent developments by Jain and Osman [1979] under

separate contract No. F30602-75-C-0118, conducted in parallel

with the present contract, are presented where appropriate.

Suppose that the transfer function of the linear part of

the system is given by

M
R (s+qi )

H(s) i= 1 Q(s)
N P(s)
n (s+pi)

i=1 (3.1)

N R.

i=l i

*

Excite the system by xl(t) . With xl(t) known or measured,

measure the system output yl(t). By successive integrations,

compute

Ewen selected xl(t) exponential for ease of analysis.
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t
x i (t) = f xi-1 (u)du

0 (3.2)
t

Yit)= f Yi-l(u)du, i=1,2
0

Suppose that N, the number of poles, is known. Form the set

(3.3)

{(YI(t)-XY2(t)) ,(Y2(t)-XY3(t)) ... ,YN(t)-XYN+l (t)),

x 2 (t),...,X N+I(t)}

where x is constant. Test the set for linear dependence by

forming the linear combination

cl(y(t)-XY 2 (t)) + ... + Cn(YN(t)-XYN+l(t))

(3.4)

+ d1x 2 (t) + ... + dNxN+l(t) = 0

The set is linearly independent if the only solution to (3.4) is

c I  = ... = CN d = ... = dN = 0.

It is linearly dependent otherwise.

Taking the Laplace transform of (3.3) an equivalent test

for linear independence is

(3.5)

cl(YI(s) - XY Y2 (s)) + . +.. C n YN(s) - N+l(S) )

+ dIX2(s) + ... + dNXN+l(s) =0

3-2



But, using (3.1) and (3.2),

Yl(s ) _Q(s) xl(s )
1 ( P(s I

j-I
Xi(s) = Xl(s) / s (3.6)

ii-1

Yi(s) = YI(s) / si, i=i,2,...

The test for linear independence in (3.5) therefore becomes

N-1 + 2 N-2 + +NQ(s)(s-X)(cls + c2sN+ + CN)

+ P(s)(dsNl+ ... + dN = 0

1 N)

The left hand side of (3.7) contains 2N coefficients. If

(s-X) is not a factor of P(s) that is, if X is not a pole of

H(s) the polynomial in (3.7) is of degree 2N-1, containing

terms in i s .. 2N- and it has 2N coefficients. The

set is therefore linearly independent.

If X is a pole of H(s) or, equivalently, (s-X) is a

factor of P(s),

P(s) = p (s)(s-x) (3.8)

where, P'(s) is of degree N-1. Dividing (3.7) by (s-k) re-

sults in a polynomial of degree 2N-2. Since there are still

2N coefficients, the set is linearly dependent.

It follows that the poles of H(s) are the values of x
for which the set in (3.3) is linearly dependent. The linear de-

pendence of a set of time functions can be readily checked using

the Gram determinant which, for the set of functions

3-3



l(t), 02(t), . k t) <t<T (3.9)

is defined as

W 1 W 1  ** 1W

Gk = det 2 1  2  (3.10)

W k l • k . ka

where the inner product Wij over the interval [0,T) is equal to

T ,W~ = f  Wi(T) J (-)d-r, i,j=l,2,...,k

and where * denotes complex conjugation.

Hence, the poles of H(s) are the values of X for which

the Gram determinant of the set of functions in (3.3) is equal to

zero.

Equivalently, it can be shown [Jain (1974)] that the poles

are the roots of the polynomial in X

N ([ 1/2
I XNi G2N+](i+li+l) = 0 (3.11)

where, [G2N+l](i+lli+l) is the value of the (i+l,i+l)th co-

factor of the Gram determinant of the set

{Yl(t), ... , YN+l(t), x2 (t), ... , XN+l(t)} . (3.12)
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In the above, it was assumed that N, the number of poles,

was known. In practice, this number must, of course, be found

before determining the poles using (3.11). The number N can be

determined by considering the set

t Y l ( t ) , . . . Y K ( t ) , x 2 ( t ) , . . . , x K ( t ) t ( 3 . 1 3 )

Using the same approach as above, this set is linearly independ-

ent if K<N; it is linearly dependent if K>N+l. The number of

poles can, therefore, be found by calculating the Gram determin-

ant for the set in (3.13) for increasing values of K,

K=2,3,.... If K is the smallest K for which the Gram de-

terminant is zero, that is, the first value for which the set is

linearly dependent, the number of poles is equal to

N = K - (3.14)

3.2 Identification Parameters and Practical Difficulties Asso-

ciated with Ewen's Methods

The identification of an unknown circuit using the pencil

of functions approach as proposed by Ewen [Ewen (1975), (1979)]

and as described in Section 3.1 therefore involves the. following

steps:

(1) Excite the system

(2) Measure the system outputs and inputs

(3) Calculate x 2 (t),..., xk(t), Y 2 (t), ... , Yk(t) as de-

fined in (3.2) by successive integrations.
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(4) Calculate the inner products over an interval T.

(5) Calculate the Gram determinant of the set of functions

in step (3) for increasing values of K.

(6) Determine the number of poles N as V'-1, where K' is

the smallest value of K for which the Gram determinant

is zero.

(7) Find the poles using (3.11).

Because of the amount of computation which is necessary, it

is more efficient to perform the calculations using a computer.

This suggests the identification set-up shown in Figure 3.1 where

the double arrow at the input indicates that the input can either

be generated in analog form and then converted to digital form or

generated by the computer and converted to analog form.

Note that, in addition to the blocks shown in Figure 3.1, a

practical identification implementation would necessitate use of

a linear output and input amplifier/attenuator with large dynamic

range to insure that the system inpujt is of the proper level and

that y(t) uses the full range of the analog to digital con-

verter. The contract under which the present effort was per-

formed called o riginally for the design and the evaluation of a

practical implementation of the above technique. This was how-

ever abandoned because of the following practical difficulties

and unresolved questions associated with the method:

(1) What is the impact of using different excitations? In

the original technique only a decaying exponential in-

put was considered.
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x (t)

Figure 3.1 Block Diagram of Identification Test Bed
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(2) Because of the digital implementation the output sig-

nal must be sampled and quantized. A sampling rate

must therefore be specified which will assure optimum

performance and which will be practical with existing

analog to digital converters.

(3) Simpson's rule was used in evaluating the integration

of a function as given by

b

f by(t)dt =b-a [y(o) + 4y(At) + 2y(2At) + 4y(3At) +
6n

a

+ 2y( (2n--2)At) 4y( (2n-l)At) + y(2nAt)]

Each integration reduces the number of samples by one

half and therefore increases the error. As the number

of poles of the system increases, the number of re-

quired integrations increases accordingly. Integra-

tion by Simpson's rule introduces error at each

step. After a number of integrations, therefore, the

error becomes excessively large. The accuracy of suc-

cessive integrals decreases rapidly. This loss of ac-

curacy due to numerical integration can be overcome by

increasing bits in the sample and the sampling rate.

However, the specifications of hardware devices which

implement analog to digital (A/D) and digital to ana-

log (D/A) conversions and the high rate of sampling

rapidly exceed the range of current technology as the

number of poles of the system increases. For example,

Ewen states that if we were to analyze a system of

four poles, the A/D converter would be required to

have 20-24 bits of resolution. The present commer-

cially available A/D converters are capable of at most

a 16 bit resolution.
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The performance of successive numerical integra-

tions has a large impact on the necessary sampling
rate. Ewen concluded that the sampling rate required

is determined by the need for accuracy of numerical

integration and not by Nyquist sampling constraints.

For a two pole system, the required sampling rate is 4

to 10 times the highest frequency of the passband of

the system if we desire a mean square error between

the actual and predicted system output to be smaller

than the mean square error induced by a 10 percent

error in each pole and residue. The sampling rate may

rise unreasonably high as the number of poles in-
creases. Considering errors in identified poles, Ewen

concluded that the bandwidth of a two pole system that

can be analyzed is limited to 10 to 30 kHz by current

device availability.

Ewen noted that the fastest commercially avail-

able A/D converter with 16 bit resolution had the cap-

ability of sampling a signal at 124 kHz. This re-

sulted in his conclusion that, at least at present,

only systems with a maximTum bandwidth of up to 10 kHz

or 30 kHz could be analyzed.

(4) *The inner product inter'.aI T which, in noisy practical

situations, will result in the specified error in the

location of the identified poles, cannot be readily

determined.

(5) The measured digital output which is used will contain

noise due essentially to three sources: quantization

noise from the A/D converter, thermal noise originat-

ing in the unknown circuit and measurement errors.
The inner products which are the elements of the Gram
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matrix will therefore be noisy. As a consequence, the

Gram de terminant will not be zero for any k. This

will, of course, make it difficult to determine the
number of system poles. Even if the correct value
of N is determined errors in the inner products will

result irn errors in pole locations. These errors in

pole locations can, of course, be expected to be in-
creased if the wrong value of N is chosen.

(6) Quality criteria must be studied which will permit to
quantify the performance of the identification tech-
nique and, after the global identification of the
sy3tem (the identification of the po~es are
zeros/residues, traded of f against the problems

identified in (1)-(5).

After the initial study resulted in the above conclusions,
it was decided with the concurrence of RADC to redirect the ef-

fort to the study of the aforementioned difficulties and unre-
solved questions. In Section 4, we describe the identification
procedure that was developed to combat these problems. More pre-
cisely, the following items were addressed:

- Selection of excitation waveforms and techniques.

- Selection of input and output functionals to be
used in forming the Gram determinant.

- Determination of correlation intervals to be used
in the calculation of the inner products.

- Investigation of stopping rules for the determin-
ation of the number of linear system poles in the
presence of system noise, quantization noise and
as a function of the relative importance of the
poles.
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Evaluation of the effectiveness of the proposed
techniques.

Analysis of the expected errors in pole locations
due to quantization noise, underspecification of
the number of poles and overspecification of the
number of poles.

Assessment of the class of systems that can be
identified given practical sampling rates and
quantization accuracies.

Study of measurement and computational techniques
that minimize errors in pole locations by averag-
ing out results of several measurements or of
several stages of the identification process.
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SECTION 4

DISCRETE ITERATIVE APPROACH

4.1 Principle of the Discrete Method

4.1.1 Basic Method

As discussed in Section 3.2, because of the noise intro-

duced by the numerical calculation of repeated integrals and the

ensuing necessity of using very high sampling rates, a primary

objective of any practical implementation is to modify the pro-

cedure so as to eliminate this difficulty.

This can be accomplished by analyzing the problem directly

in the discrete sampled domain instead of implementing a digital

technique which emulates analog operations, i.e., the numerical

computation of successive integrals.

As in (3.1) suppose that the linear part of the system is

characterized by input-output transfer function

M
I (s+q i )

H(s) i=l M<N (4.1)
N
riI (s+p )
i=l

N R.

il s+P

where, for notational simplicity, it is assumed that the system

poles are distinct. If the unknown circuit is excited by the sum

of I exponentials
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I -b t
x(t) = I a e 1 (4.2)i=l 1

the system output is equal to

N -pit I -bit
y(t) = cie + d e (4.3)

i=l i=l

where, the constants ci and di are, respectively, given by

I R.C. =
i j=l bj -Pi

N R

d ji l I j bi

Note that the assumption that the input is the sum of ex-

ponentials is equivalent to the assumption that the Laplace

transform of x(t) is the ratio of two polynomials in s with

the denominator polynomial of higher degree than the numerator

polynomial and the denominator polynomial having distinct

roots. Sampling y(t) with sampling frequency fs=i/T, sampl-

ing interval T, the sampled version of the output, over an in-

terval j0,LT], is given by

N -npiT I -nbiT
Yl(nT) = cie + d e 1, 0On UL (4.4)

i=l 1i=l

Note that the choice of L, the number of samples used, and of

the sampling period T are discussed in Section 5.3.2.
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By successive shifts, form

Y2 (nT) y1 ((n+1)T)

N -(n+.)p T I -(n~l)b Tc i ce + di
j=1 2

N -flp .T I-nb.T
j= .(2)e + i ~2e ~~

YK (rT) Y.K_((n+1.)T) =Y ,((n+K-i)T) 
(4.5)

N I -flp T- C.(k)e 1 + d.ke i n(

where

Cik) C (-Ie-p. T -(k-l)PiT

d.{k) d C.(k-I)e- 
= ce -kl biT0 - r p #
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Note that each of the yi(nT), i=1,2,...,K is a linear combina-

-np.T -nPNT -nb.T
tion of the functions e , , , e , e T

-nb T
e Since these functions are linearly independent they

can be considered to form a basis for Yi(nT), i=l,2,...,K.

Consider the set of shifted versions of the sampled output

{yl(nT),Y 2 (nT),... ,YK(nT) (4.6)

and test it for linear independence by forming the linear combi--

nation

alYl(nT) + a 2Y 2 (nT) + ..- + aKYK(nT) = 0,0n4L . (4.7)

-npiT -npNT
Since the linear combination in (4.7) has e , ... , e

-nbiT nbj T

e , ..., e as its basis, it is a (n+I)-dimensional

function. The left-hand side of (4.7) contains K coeffi-

cients. It follows that the set is linearly independent if

K(N+I (4.8)

and that it is linearly dependent if

K>N+I . (4.9)
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AS in Section 3.1, the linear dependence can be checked by

using the Gram determinant.

The set of functions in (4.6) is linearly dependent if the

Gram determinant

l yly2  -' K (4.10)

72Yl Y2Y2 y2YK
Gk =det 0

yKYl -YKY2 yKYK J

where, L

yiYj = I Yi(nT)yj(nT), .i,j=l,2,...,K
n=0

The set is linearly independent if

GK / 0.

The dimensionality N+I of the basis, and thus the number N of

poles, can be determined by calculating the Gram determinant for

increasing values of K. If K' is the smallest value of K

such that GKI=O, then

N+I K'-l . (4.11)
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Having determined N+I, the system poles -pl, **** -PN and the

input poles -b1, ... can be found using a similar ap-

proach.

Consider the set

(4.12)

Using (4.5), the test for linear independence can be written as

N -p.T -np.T + I -b.iT n T
a1 [ iciXe 1)e 1+ di(X-e 1)e j (4.13)

+ a N ePi ( -p.T) -np.T + I -b.T -b.T -n
+2 [ iice Te 1de i 1 (X-e ')enb]

N (N+II)PiT -p. T -np.iT
+ s*+ a N+I 1 c ie'NIlP (X-e 1)e 1

I -(N+I-1)b.T -b.T -nb.T
+ d d e '(X-e )e ~ 0.

If ItnX/T is not one of the system or input poles, that is, if

x#e~i =,,., (4. 14)

and -b.T
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the left-hand side of (4.13) is of dimension N+I and contains

N+I coefficients. It follows that the set in (4.12) is then

linearly independent.

If InX/T is one of the system or input poles,

X= e -pT liN (4.15)

or -biT
1 e , 1i¢I

the dimension of the space in (4.13) is N+I-l but the left-hand

side still contains N+I coefficients. It follows that the set

is linearly dependent.

Hence, the system and input poles can be determined from

the values of X for which the set in (4.12) is linearly depen-

dent, or equivalently, for which the Gram determinant of the set

if zero. Using an approach due to Jain [1974] as in (3.11) it

can be shown that these values of X are the roots of the

polynomial

N+I N+1-1
+I ([GN+I+l](i+l,i+l)) / 2 

= 0 (4.16)
i=0

where, [GN+I+l](i+li+l) is the (i+l,i+l)th cofactor of the

Gram determinant of the set

{l (nT), lnT), .4i+l(nT) (4.17)
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If klk 2 1 **,X.N+ I ' represent the N+I roots of the polynomial

in (4.16), the system and input poles can be cained from

Inki/T, i=1,2,...,N+I . (4.18)

Our discrete sampling and shift identification technique is

very similar to the pencil of functions method described in Chap-

ter 3. The essential differences are that

The proposed technique is purely discrete: the
successive integrals have been replaced by successive
shifts.

If the system is excited by the sum of I exponential
excitations, (N+I) poles are identified based on the
determinant of a (N+I+I)x(N+I+l) matrix. The tech-
nique in Chapter 3 used a (2N+l)x(2N+l) matrix to
identify N poles.

Note that, in the above, the input poles are identified to-

gether with the system poles. In the following section the iden-

tification method derived here is slightly modified to make use

cf the knowledge of the input poles.

4.1.2 Use of Input

During the identification of an unknown circuit, the input

to the circuit is, of course, known. This knowledge can there-

fore be used in the identification technique.
-nblT -nb 2 T -nbiT

Suppose that e , e , ... , e are known

and define the set
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-nblT -nb T
{yl(nT),Y 2 (nT),... ,yk(nT),e ,.00,e I . (4.19)

Test this set for linear independence by considering

-nblT

alYl(nT) + a 2Y 2 (nT) + .* + aKYK(nT) + a K+le (4.20)

-nb T
+ g* + aK+i e 0, 0' n<L

where yi(nT), i=l,2,...,K is defined in (4.5).

Repeating the argument used to derive (4.8) and (4.9), the

set in (4.19) is linearly independent if

Ke-N (4.21)

and it is linearly dependent otherwise. It follows that if K'

is the smallest value of K for which the Gram determinant of

the set in (4.19) is zero, the number of system poles N is

given by

N = K' - 1 . (4.22)

Having determined the number of system poles by increasing K

until K' is found, the system poles can be identified by con-

sidering the set

(4.23)

-nb1T -nbiT

(Yl(nT)-Y2 (nT)),..,(XYN (nT) -YN+l(nT) ) , e ,*90 ,e } .
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Repeating the steps leading to (4.16), the system poles can be

found from the roots of the polynomial in X

x N - i ([GN+I+l](i+li+l))1 / 2 =0 (4.24)
i=0

where, [GN+I+l](i+li+l) is the (i+l,i+l)th cofactor of the

Gram determinant of the set

-nblT -nb 1 T
{yl(nT), • •,YN+l (nT),e ,...,e } . (4.25)

Denoting the roots of the polynomial in (4.24) by Xl1% 2 F...,N, the

system poles are given by

-Pi = Inki/T, i=l,2,...,N . (4.26)

Equation (4.24) thus permits the identification of the system

poles. The only difference between this result and procedure and

those presented in Section 4.1.1 is that, in the present case,

knowledge of the input is used and only the system poles are

identified. Note that in the pencil of functions method, Ewen

(19791 and Jain (19801 also use the knowledge of the input. This

is further discussed in Section 4.3. Thus, the present method

can be considered as a discrete version of the pencil of func-

tions technique which uses shifts.

In the following section, use of the input is applied se-

lectively and an iterative identification technique is defined.
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4.2 Iterative Approach

The selective use of the knowledge of the input in the

identification procedure can serve as a check for the accuracy of

the identified system poles and in the determination of the re-

gions where the poles are located. Moreover, the iterative var-

iation of the sampling interval together with the use as knowns

of previously identified poles can be the basis of an iterative

identification method.

This approach can best be illustrated through a simple ex-

ample. Suppose that the system transfer function contains two

real poles -pl and -P 2  with P2  much larger than pl. Ex-

cite the system by an input consisting of a single exponential

x(t) = e-b t .

Then, using (4.4), the sampled output is given by

-nplT -2T+d - n b T . 427
Yl(nT) = cle + c 2 e. + de (4.27)

First, choose a sampling interval T and an input pole -b such

that

b << p1 , P2  (4.28)

T -1/b.

It follows that

bT -1 (4.29)

plT << 1

P2 « 1

and
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Yl(nT) -de -nbT . (4.30)

Carry out the identification technique without using the know-

ledge of the input and identify a single pole using the set

{yl(nT), Y2 (nT)}

and (4.16) with N+I=l. From (4.30) it follows that this will

result in the input pole being identified.

Iteratively decrease T and repeat the step above. When

the sampling interval is small enough such that

plT -1 (4.31)

p2T << 1

the sampled output will, using (4.27), be approximately equal to

-nPlT d-nbT.

Yl(nT) - c1e + de . (4.32)

Because of the influence of the system pole at -pl on the out-

put, the identification of a single pole as above will. no longer

result in the input pole being identified.

The identification of a single pole which is not the input

pole thus indicates the presence of a system pole(s) -pi such-nPiT
that e , n=l,2,..., is not negligibly small. Then, this

pole(s) can be identified using (4.24) where, knowledge of the

input is used.
A

Suppose that this procedure resulted in p1  being identi-

fied. The accuracy of p1 , that is how well e models the

system contribution to the output, can be checked by using
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-nP1 T

e as a known and identifying the input pole. That is, use

(4.24) with N=l and the set

{y1 (nT), Y2 (nT), enpT (4.33

-to carry out the identification. If, following this procedure,

the identified pole is close to the input pole, p1 can be judged

to be an adequate estimate of p1 . The degree of closeness which

is required depends on the amoint of noise corrupting the mea-

surements. In the noiseless case, the identified input pole is

judged close to the actual input pole if it is within 10% of the

true value. In the higher noise level cases considered in the

following, the acceptance region increases to 40%.

This last step can then be repeated for decreasing values

of T. The identification based on the set in (4.33) will give a

good approximation of the input pole when (4.32) is an adequate

representation of the system output. When this is not the case,

that is, when T is small enough so that

p2T l,

and the system output is given by (4.27) the input pole will not

be identified. Then, the knowledge of the ,;stem input and of

p, can be used to identify the other poles which contribute to

the system output. The identified poles can again be checked by

using them as knowns and identifying the input. The above pro-

cedure can be continued to identify more poles.

Note that the iterative identification technique was illus-

trated above for a system which only had two real widely sepa-

rated poles and an input which was a single exponential. Neither

of these restrictions is an inherent part of the technique which

can be readily generalized for complex conjugate poles, grouped

poles, and multi-exponential inputs.
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The iterative discrete identification method described here

has the following advantages:

* It permits us to find the regions where the sys-
tem poles are located.

* It provides a checking procedure for the accuracy
of the identified poles.

* It gives a mechanism for determining the number
of system poles by finding which poles, when used
as knowns, result in an identified input pole(s)
which is closest to the true input pole(s). As
discussed in Chapter 5, this is especially help-
ful when the system output contains noise.

By using previously identified poles as knowns,
it allows the separate identification of the
poles of a wideband system in different frequency
bands.

The only restriction inherent in this technique is that the

system excitation be the sum of exponentials.

Note that if the regions where the poles are located and

the number of poles in each region are known a priori, the itera-

tive procedure is not even needed. For example, suppose that it

is known that the system contains three poles between f, and f2

and two poles between f3 and f4 , f3 >f 2
•  The steps would then

be:

-tt2

(1) Input e .

(2) Sample with sampling periof i/f2.

(3) Use the knowledge of the input and identify three
poles. The accuracy of the three identified poles can
be checked by using them as knowns and identifying the
input.
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-t f 4
(4) Input e .

(5) Sample with period 1/f 4.

(6) Use the knowledge of the input and of the three iden-
tified lower frequency poles to identify two poles.

(7) Check for the accuracy of the identified poles.

Note that this procedure would require the factoring of a

polynomial of degree 3 to find the lower frequency poles and of a

polynomial of degree 2 to find the higher frequency poles. This

may result in large errors in pole locations even though the

polynomials which are factored are close in a global sense to the

true polynomials. This question is discussed further in Section

7.2. Note. also that an iterative technique where the poles are

identified one at a time does not require the factoring of poly-

nomials since at each step the polynomial is of degree 1.

Before applying the discrete iterative method in Chapter 5

to the identification of a system in the presence of noise, the

following section relates the iterative method to the pencil-of-

functions method described in Chapter 3.

4.3 Relation to the Pencil-of-Functions Method

Aside from the selective use of the input and the iterative

nature of the procedure, the iterative discrete identification

method described in Sections 4.1 and 4.2 is very closely related

to the pencil-of-functions method presented in Chapter 3. The

principal difference between the two methods lies in the func-

tions included in the set which is tested for linear indepen-

dence.

More precisely, in the pencil-of-functions method the poles

are determined using the polynomial equation in (3.11) and the

Gram determinant of the set
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{l , .. Y N+I(t), X2 (t), ... , x N+l (W)

whose elements are formed by successive integrations as defined

in (3.2).

On the other hand, in the discrete iterative approach the

determination of the poles is based on a similar polynomial

equation (4.16) but with the set now being defined as

{Yl(nT), .. ,YN+I+I (nT)}

or _nblT _nbIT
oyl(nT), ... ,YN+l(nT), e , ... , e

where, the elements a:e forined by successive shifts as in (4.5).

Note from (4.5) that successive shifts preserve the dimen-

sionality of the space of yl(nT). That is, if yl(nT) can be

expressed as the linear combination of the basis functions

-nplT -npNT -nb T -nbIT
e , ... , e , e , ... , e

Yk(nT), obtained through (k-l) successive shift of yl(nT),

can also be expressed as a linear combination of the same func-

tions. This space preservation aspect represents a fundamental

advantage of the new approach. The pencil-of-functions method as

described in Chapter 3 augments the space of yl(t) through the

use of successive integrals. If e-p l t , e ., represent

the basis of the system response, an integration
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t -piu -Pit
f e du - [l-e
0 P

introduces the additional basis function 1. Successive integra-

tions introduce the additional components t,t2 , . . . , .

The repeated integral and the shift methods of forming the

elements of the set are, by no means, unique. In general, the

elements of the set can be considered to be the result of a

mapping from the input/output functions. Several continuous and

discrete domain mappings have been tried. Sarkar [Sarkar, et

al., (1980)) suggested using reverse time integration which for

exponential inputs does not augment the space. Jain [Jain and

Osman (179), Oain (1980)] successively used the z-domain opera-

tor z/(z-b) to form the members of the set. This technique

augments the space by introducing additional poles at z=b.

Note that the space dimension preservation property of

either successive shifts or successive reverse integrations de-

pends on the exponential nature of the input. If the input can-

not be expressed as the sum of exponentials, these operations

will augment the space. Since an important part of the discrete

iterative procedure developed in Section 4.2 is the ability to

selectively use the knowledge of the input and since this possi-

bility also depends on the exponential nature of the input, we

adopted the successive shift formulation which does not augment

the space.

Note also that the selective use of the input can be ap-

plied in the pencil-of-functions method. In order to identify

the input pole it would suffice to consider that the input pole

is part of the unknown system whereas the input is an impulse.
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SECTION 5

IDENTIFICATION IN THE PRESENCE OF NOISE

5.1 Introduction

When the identification technique is applied in practice to

a real system, the measured discrete output will be contaminated

by noise. Then, instead of yl(nT), the measured quantity can,

in general, be expressed as

zl(nT) = y1 (nT) + w1 (nT) (5.1)

where w1 (nT) is an additive noise which can include quantiza-

tion noise, measurement errors and system thermal noise.

Since the linear independence relations permitting the

identification of the system poles will then no longer be strict-

ly valid, difficulties can be expected in the determination of

the number of poles and the identification of the poles them-

selves. More precisely, the number-of poles is determined from

the value of the Gram determinant

ZlZ1  ... ZlZk

Gk = det . (5.2)

ZkZl, ... k k

of the set {zl(nT), ... , zk(nT)} where, the shifted versions of

the measured output are again defined as

zi(nT) = z i(l(n+l)T), 2 4 i 4 k

5-1



and L ,
z iz" I =0 zi(nT) zj(nT) .(5.3)

n=O

where L is the number of sampling periods. Because of the

noise term contained in zl(nT), the inner products which are

the elements of the Gram matrix will also be corrupted by

noise. Using (5.1),

ziz. = yiYj + Yiw. + wiY j + wiw. . (5.4)

The first term in the sum in (5.4) is the inner product which

would be measured in the absence of noise and on which the iden-

tification technique, as described in Chapter 4, is based.

Knowledge of the statistics of the noise wl(nT) permits

the calculation of the statistics of the inner products and thus

can be used to evaluate the effects of noise on the inner prod-

ucts. The analysis of the effect of noise on the Gram determin-

ant in (5.2), which serves to determine the number of poles and

is the basis for the determination of the poles, is highly com-

plicated because of the nature of a determinant. Consequently,

the evaluation of the identification procedure and the determina-

tion of the parameters to be used in the identification is best

carried out through simulation.

5.2 Simulation Program Characteristics

A listing of the simulation program used in the evaluation

of the discrete iterative technique and in the determination of

the optimum identification parameters is given in Appendix A.

The functions performed by the program and the options available

can be summarized as follows.
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5.2.1 System Output

The program calculates the system output as

zl(nT) = y(1) (nT) + y 2)(nT) + w(nT), 0 < n < P (5.5)

where, the output due to one exponential at the input is, using

(4.3) and (4.4), given by

(5.6)

(j) N R. -npiT N R. -nb .T
y (nT) b 1 e + -b. e j=1,2bj-P i=1 Pi-bjjl2ii1 l

and w(nT) is a real, zero-mean, uncorrelated Gaussian random

process.

The number of system poles N, the system poles

-PI' ... -PN' the system residues RI, ... RN, the input

poles -bI, -b2, the sampling interval T, the length of the

interval of interest L and the standard deviation of the noise

are inputs to the program. The choice of T and L is made at

each step of the procedure in the manner described in Sections

5.3.2 and 6.1.

Several notes are in order:

* Since the simulated system is linear, the output

in (5.1) which is the sum of the outputs due to

single exponentials is the same as that due to

the sum of the same two input exponentials.
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" For simplicity, the input poles are constrained

to be complex conjugates of each other. This

permits to specify a real exponential input by

setting Im{b i } = Im{b2} = 0; a sinusoidal input

by setting Re{bIl = Re{b 2} = 0; a decaying sin-

usoidal input by specifying bI  and b2

(bl=b 2*) as having non-zero real and imaginary

parts.

* The noise sequence wl(nT) models thermal, mea-

surement and quantization noise. For simplicity,

it is assumed to be Gaussian even though

wl(nT), and especially its quantization noise

components can be expected to be non-Gaussian in

practice. If dithering is used, however, the

Gaussian assumption can be expected to be

valid. Since the signal-to-noise ratio of

zl(nT) is a function of the length of the inter-

val over which it is defined, the noise standard

deviation is defined relative to the maximum value

of the signal component y1  (nT) + y(1 )(nT)

instead of being defined in terms of total signal

power over the interval. This permits the com-

parison of results obtained using various inter-

val lengths.

5.2.2 Identification Algorithms

In the case where knowledge of the input is not used and

the input poles are identified together with the system poles,

the program performs the operations described in Section 4.1.1.

It
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forms by successive shifts the set

{zl(nT),...,zk(nT)1, 0 < n < L, L + k < P (5.7)

calculates the inner products

L ,
ziz. I )zi(nT)z (nT)

) n__0  )j

computes the Gram determinant

Gk = det

•_kz 0 z k

finds the (i+l, i+l)th co-factors of the Gram deter-

minant for i=0,1,...,k-I

- forms the polynomial equation

k-I x k-l-i([Gk](i+li+l))1/2 
= 0

i= 0

finds the roots XI... Xkl_ of the polynomial

- determines the corresponding poles as

A nxi/T, i=1,2,....,Ik-
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These calculations are performed for a specified range of values

of k.

In the case where the input and/or previously identified

poles are used as knowns, the set in (5.7) is modified to include

these quantities. If al,a 2 ,...,a 1  denote the known input

and/or system poles the set is defined as

-nalT -na T
{zl(nT),..., zk(nT), e ,...,e } (5.8)

The operations described above are then carried out for the set

in (5.8). Using (4.23), the poles of interest are found from the

roots of the polynomial

k-i k- l -i ([G (1/2 = 0

i=0

5.3 Parameter Choices

Before carrying out the identification procedure it is

necessary to choose the excitation, the sampling rate or interval

and the interval over which the inner products which define the

Gram matrix elements are calculated so as to insure optimum per-

formance with a minimum of complexity.

5.3.1 Excitation

In the choice of the excitation the following factors must

be considered:
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(1) The excitation must be easy to implement in a labora-
tory.

(2) It must excite the system poles. Since the response
due to the system is the sum of decaying real or com-
plex exponentials (4.3), the identification is based
on the transient system response. This transient re-
sponse must be excited by the input.

(3) It must be adjustable so that, as a first step, it
will essentially only excite the linear part of the
system.

(4) It must result in an easily analyzable and identifi-
able output.

An input consisting of a sum of exponentials satisfies the

four objectives stated above. We have selected the following

elementary inputs: a single real exponential; a sinusoid; and a

decaying sinusoid. They present the advantage of containing one

or two input poles which can be readily identified using the dis-

crete iterative approach.

Although they satisfy requirements (1), (3), and (4), the

decaying and nondecaying sinusoidal inputs give rise to the fol-

lowing effects with respect to requirement (2):

First, suppose that the system contains one real pole - p,

and is excited by a decaying sinusoid

x(t) = e - ( b + j w) t + e - ( b - j w) t  (5.9)

-bt
= 2e coswt

Then, using (4.3), the system output is given by
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y(t)R 1  R1  -Pltb+j + b- ]e (5.10)

R R
+ I e -(b+jw)t + -(b-jw)t

p- b-jw P 1 -b+J

If b is equal to p1 , the system output becomes

R 1 e - ( b + j ) t + l .---- (5.1
y(t) = e +-- e (5.11)

and the output does not contain a contribution due to the system

pole. Thus, if it is desired to identify p1 , care should be

taken not to use a decaying sinusoidal input with decay factor

b which can equal p1 . Rather, we should select a value of b

which is smaller than the lowest real poles to be identified. On

the cther hand, suppose that PK is one of several system poles,

that PK+I is the next larger pole, and that PK is the largest

pole that has aiready been identified. Then, if the system is

excited by e coswt, the pole at -PK will not contribute to

the output. This will facilitate accurate identification of

PK+l by decreasing the contribution to the output of the known

pole closest to the unknown pole.

The second effect that should be noted arises in the case

where a sinusoidal excitation is used. Suppose that

x(t) = 2coswt (5.12)

= e j wt + e-J u t
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and, for simplicity, that the system has one pole -p1. Then,

using (4.3), the system output becomes

y(t) = R1  R1  ] -Pit 2R 1p2
-te + ----- + 2 coswt. (5.13)JW-p1  1W-P1  P2 + 2

Note that the system pole, p, contributes a decaying exponen-
tial to the output whereas the input poles at +jw contribute a

pure sinusoid. It follows that the input contribution will not

decay with time and will eventuaily tend to be greater than the
system pole contribution, thus obscuring the pole contribution.

Although we give an example in Section 6.2.4 where a pure sinu-

soidal input was used to yield a successful identification, this
is not generally true. In some cases, a steady sinusoidal exci-

tation can be impractical for detection of poles in certain fre-

quency regions.

5.3.2 Correlation Interval and Sampling Rate

An indication of the effect of the sampling rate and the

correlation interval can be obtained from the follov'ing consider-

ations.

Using (5.4), examine the inner product over an irterval

[0,L)

Z yly + ylWl + w 1  + w (nT) . (5.14)
n=O

Suppose tha' the noise wl(nT) is a zero-mean, stationary, uncor-
related Gaussian random sequence with variance a2. Then the ex-

pected value of the inner product is equal to
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E{z-- 1 } ylYl + (L+I)a 2  (5.15)

where yIy 1 represents the signal component and (L+l)o2 is the

bias introduced by the noise. Similarly, the variance of z1z

can be expressed as

2 4
Var[z-- l = 20 yly I + 2(L+l)o 4 . (5.16)

Note that both the mean and the variance of the inner product

contain a noise component which increases linearly with the in-

terval length L. It follows that it is desirable to use a short

correlation interval over which y1 y1  includes a large portion

of the total signal power and the noise contribution is as small

as possible.

The effects of the sampling interval or rate can be ob-

served by considering the following example. Suppose that the

noisy system output is given by

z1 (nT) = e
-nT + e- 5nT + w1 (nT) (5.17)

and it is desired to identify the two poles I and 5. Suppose

that a high sampling rate equivalent to ten times the highest

signal frequency (5) contained in (5.17) is used. Then,

T = .02 (5.18)
50

and

zI(nT) = (e-' 0 2 )n + (e-' )n + wI(nT)

= (.98) n  + (.905)n + w1 (nT) (5.19)

= YI(nT) + w(nT)



where

yl(nT) = (.9 8 )n  + (.905)
n

Consider the Gram determinant

YlYl + N 1 YlY2 + N 1

IG2 1 = det (5.20)

Y2Yl + N 21 Y2Y2 + N 22

where, Nij, i,j=l,2 represent the noise contribution to the Gram

determinant elements. If the correlation interval is suffic-

iently long so that the ylyj , i,j=l,2, contain all the signal

power, for p1 = -1, P2 = -5, and T = .02, the Gram determinant in

(5.20) is equal to

48.46 + N11 46.41 + N 1 2 ]
G21 = detI (5.21)

L46.41 + N12 44.46 + N2 2J

Note that the signal components in the matrix elements in (5.21)

are within 10% of each other. This indicates that the determin-

ant is close to being ill-conditioned and will be severely af-

fected by the noise components.

Suppose that a sampling rate equivalent to the highest fre-

quency contained in (5.17) is used. Then

T- =-.2
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and

z1 (nT) = (e-'2 )n + (e-l)n + w 1 (nT)

(5.22)

= (.82)n + (.3 7 )n + w1 (nT)

Then, for a large correlation interval, the Gram determinant in

(5.20) is equal to

7.08 + N11 4.64 + NI 2 ]

IG2 1 = det (5.23)

4.64 + NI12 3.08 + N 22-1

The relative spread of the element signal components in (9.23) is

much greater than in (5.21). It can be expected therefore that

(5.23) will be better behaved than (5.21) in the presence of

noise and would lead to a more accurate identification. Note

that identification is not based on the [G2] matrix in (5.20) but

would be based on the [G3] matrix defined in (4.10). The (G2]

matrix is then one of the co-factors of the [G3] matrix. Con-

clusions similar to the above can be drawn regarding the [G3] ma-

trices resulting from using a sampling interval of .02 and .2.

The conclusions as to the desirable sampling interval and

correlation interval can be checked using the simulation results

presented in Table 5.1. These results were obtained for the out-

put given in (5.12) without additive noise and for various levels
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TABLE 5.1

IDENTIFICATION RESULTS FOR TWO POLE CASE

L T Pl P2  Pl P2 a/Ymax

10 1 1 2 .998 2.0005 0

10 1 1 2 COMPLEX CONJUGATE .01

10 1 1 2 COMPLEX CONJUGATE .005

10 1 1 2 1.074 1.797 .001

50 1 1 2 I COMPLEX CONJUGATE .001

10 0.5 1 2 1.0049 1.98 .001

50 0.5 1 2 1.028 1.94 .001

10 0.5 1 2 1.11 1.78 .005

50 0.5 1 2 COMPLEX CONJUGATE .005

50 0.1 1 2 1.05 1.979 .001

10 0.05 1 2 1.016 1.98 0

10 0.05 1 2 1.026 2.065 0.001

10 0.05 1 2 COMPLEX CONJUGATE 0.005

10 0.2 1 5 99988 5.00013 0

10 0.2 1 5 1.0048 4.968 0.001

10 0.2 1 5 1.085 4.727 0.005

10 0.2 1 5 1.33 4.2 0.01

50 0.2 1 5 COMPLEX CONJUGATE 0.01

10 0.05 1 5 COMPLEX CONJUGATE 0.01

L CORRELATION INTERVAL

T = SAMPLING INTERVAL

PIP2 SYSTEM POLES

pl, 2 = ESTIMATED POLES

a/Ymax STANDARD DEVIATION/MAX. OF OUTPUT OF ADDITIVE

GAUSSIAN NOISE
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of additive noise. The noise present for a=O is dlue to computer

round-off errors. The best results can be observed to be ob-

tained for a small correlation interval length and a large sampl-

ing interval (sampling rate approximately equal to the highest

frequency contained in the output).

For complex conjugate poles, two cases present them-

selves. If the imaginary part of the pole is smaller than the

real part the conclusions made above as to the desi- le sampling

and correlation intervals remain true. If the iit ,. aary part is
larger than the real part the sampling rate must be proportional

to the imaginary part in order to prevent aliasing.

5.3.3 Noise Reduction

In a practical application, the noise level may, in some

cases, be too high for the proper operation of the identification

technique. Then several methods may be used to diminish the ef-

fects of noise.

If the primary component of noise and signal output are un-

correlated and output noise is zero mean useful methods of noise

reduction include the measurement and the averaging of responses

to periodic repetitions of the input and the averaging of the

Gram matrix elements obtained from repeated me asurements.

In cases where the largest measurement error is due to

quantization error induced by the A/D converter, dithering of the

A/D input signal could be especially helpful. This is accomp-

lished by adding a pseudorandom noise to the output of the black

box to cause a uniformly distributed amplitude dither before the

A/D converter. Digital samples at the output of the A/D conver-

ter can then be taken repetitively and corresponding data points

averaged to eliminate effects of the dither and establish the

true value of the signal. If quantization levels and timin'g re-
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rndined constant for all the repeated responses, this method could

be used to improve the A/D accuracy. Alternatively, the timing

can be dithered, within a small range so that samples are first

taken on one set of points on the waveform and then on another.

In this manner, the quantization error can be averaged out to a

certain extent.

The noise effects will manifest themselves during the prac-

tical implementation of the identification technique. The ade-

quacy of the proposed noise reduction techniques can only be

truly ascertained in practice where constraints as to timing ef-

fects are included and the predominant noise sources are identi-

f ied.

5.4 -Determination of the Number of Poles

As described in Section 4.1.1 the number of system poles

can be determined from the order of the lowest Gram determinant

to vanish. That is, if K' is the lowest value of K for which

GK approaches zero, the number of poles is given by

N = K' 1

In the case where the system output is not corrupted by noise,

this result is valid as illustrated by the example presented in

Figure 5.1. The parameters are, in this case:

System Poles: .033, .080

System Residues: -.06112, .036

Input Pole: .12

Sampling Interval T: 5

Correlation Interval L: 10.
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In this example, there are two system poles and one input pole.

The system output, therefore, contains three exponentials. From

Figure 5.1, the sudden drop in the value of the Gram determinant

is observed at K'=4 and the number of poles is therefore accur-

ately determined as 3. Note that because of computer round-off

errors the Gram determinant never equals exactly zero.

When the system output is corrupted by noise, however, the

determination of the number of poles from the value of the Gram

determinant for increasing values of K becomes more problemati-

cal. This is illustrated in Figure 5.2 which was obtained for

the same parameters as those used for Figure 5.1 but with addi-

tive noise whose standard deviation ranged from .1% to 5% of the

maximum value of the output. Clearly, in the presence of a sub-

stantial noise component the determination of the number of poles

is very difficult and from the results of Figure 5.2 would appear

to be impossible for noise levels higher than .1% of the maximum

output.

This suggests the advisibility of a different criterion for

determining N. In particular, we explored the possibility of

identifying the system input, which is known, as a check on

whether the number of unknown system poles has been properly

identified.

We believe that such an approach is possible because when

the number of poles is incorrectly specified, the poles which are

identified are, in general, very different from the true poles

and vary widely.

As discussed in Chapter 7, the identified linear transfer

function may be relatively close, in a global sense, to the true

transfer function even if the location of the identified poles

are quite inaccurate. For this reason, we cannot be satisfied

simply by examining the linear transfer function and eventually

the acceptability of results will depend on the effect of linear

pole location errors on the identification of the nonlinear

transfer functions themselves.
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SECTION 6

SIMULATION RESULTS

6.1 Introduction

In the identification of a system, two cases may present

themselves. In the first case, the regions where poles are pres-

ent and the number of poles in each region are known a priori.

In the second case, this information is not available and it is

desired to find the poles in a region of interest, let us say be-

tween frequencies f, and f2. In the first case, as discussed in

Section 4.2, the iterative aspect of the identification may not

be needed. The identification technique then becomes very simi-

lar to the one proposed by Jain and Osman 119801. The additional

feature of the proposed technique is the possibility for checking

the accuracy of the identified poles by taking them as knowns and

identifying the input poles.

In the case where the regions where the poles are located

and/or their number is not known and it is desired to identify

the system between frequencies f, and f2 , the steps of the itera-

tive discrete identification procedure, as described in Sections

4.1 and 4.2, are as follows for a real exponential input:

1. Excite the system with

X~t = -btF

b small (smaller than f, the smallest system pole ex-

pected to be found). Using a sampling interval in the

approximate range cT 4Cli identify one pole us-
ing (4.16) with N + I = 1. Since at least one pole,

the input pole, contributes to the output, the Gram

determinant is not ill-posed for N + I 1 .
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2. If the identified pole is close to -b, increase b, de-

crease proportionally T and repeat (1). Based on ex-

perience with several numerical examples, in this step

and in step 5 below, the identified input pole is

judged to be close to the known input pole if it is

within 10% of the true value in low noise cases and

40% in higher noise cases. Low noise conditions are

said to exist if 0 < o/y max .005; high noise condi-

tions are said to exist if .005 < /Ymax/ < .05

3. If the identified pole is not close to -b, use -b as a

known and identify the pole(s) contributing to the

system output using (4.24). This can be done in con-

junction with the information as to the number of

poles given by the value of GK for increasing K.

4. Check the identified poles by using them as knowns and

looking for the input pole using (4.24) with N=l.

5. When the identification is found to be satisfactory,

use the identified pole(s) as knowns, increase b, de-

crease proportionally T and again look for the input.

6. Continue this procedure until all poles in the region

of interest are determined.

As noted in Section 5.1, a decaying sinusoidal input, a

sinusoidal input or an input consisting of the sum of exponen-

tials could also be used.

In certain cases, the identification may not be found to be

satisfactory for any of the identified poles. This may arise for

three principal reasons. The noise may be too large for satis-

factory identification. In this case, the noise would need to he

diminished before proceeding with the identification. In prac-
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tice, this may be accomplished by sampling of repeated replicas

of the output and averaging the samples.

A second cause for unsatisfactory identified poles may be

poorly chosen values of b and T. This would occur, for example,

if b is too large (T l/b). Then, too many poles may be identi-

fied at once or the poles may be much smaller than b, resulting

in a poorly conditioned Gram determinant.

Finally, unsatisfactory results may be obtained if complex

conjugate poles, say -pl+jwl, -pl-jw, with wl>>pl are being iden-

tified with T - i/pl. Sampling at the rate l/T would then result

in substantial aliasing leading to erroneous results. These

could be improved by decreasing T.

Note that these three cases may, just as well, arise in the

non-iterative pencil-of-functions method. Note also that in the

non-iterative pencil-of-functions method the sampling rates to be

used are not known unless the regions where poles are located are

known a priori. One sampling rate corresponding to the highest

frequency of interest f 2 cannot be used for wideband systems be-

cause of the large dynamic range of the possible poles between fl

and f2 " In all cases where the number of poles is not known the

pencil-of-functions method involves iterations. Only one input

is used but iterations are performed in order to estimate the

number of poles.

The general question of what represents a satisfactory or

unsatisfactory identified pole is closely tied to the problem of

defining a quality criterion for the identification results.

This question will be addressed in more detail in Section 7. In

the present study, we concentrated on the location of poles only

and not location of zeros or the value of residues. Both poles

and zeros are needed to judge the accuracy of transfer function

identification. In view of this, the most obvious criterion of

accuracy is, of necessity, simply the percentage mean square

error in the value of the identified poles.
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6.2 Simulation Results

6.2.1 One Pole Case

In order to evaluate the effect of noise on the identifica-

tion of a very elementary system consider the one pole case where

the impulse response is given by:

h(t) = e-t

At time t=O, excite the system with a single real exponential

x(t) = ebt.

The system output is then given by

y(t) = 1.I e-t - e bt,b-1~

If the input is used as a known,. one pole needs to be identi-

fied. If knowledge of the input is not used, the problem is

equivalent to that of identifying two poles. The number of poles

to be identified was assumed known in both cases.

The results of the simulation are presented in Table 6.1.

A correlation interval of L=10 (10 samples) was used in all

cases. The identified parameters are denoted as b and p. The

following conclusions can be drawn from these results.

- Noise tolerance is considerable when only one pole is

being identified. Noise has much more effect in the

two pole case. In general, identification quality can

be expected to be inversely proportional to the numher

of poles being identified. The best results are ob-

tained when b is small; that is, for an input ap-

proaching a step.
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TABLE 6.1

IDENTIFICATION RESULTS FOR ONE POLE CASE

IN THE PRESENCE OF NOISE

CORRELATION INTERVAL L=10

T^

o/ymax b P1 pl

1. .005 .001 1. 1.013

1. .05 .001 1. .996

1. .5 .001 1. .72

1. 1. .001 1. .67

.5 .005 2.0 1. .988

.5 .05 2.0 1. .87

.5 .5 2.0 1. .303

.2 .005 5.0 1. .994

.2 .05 5.0 1. .94

.2 .5 5.0 1 .523

.002 .05 500.0 1. .96

.002 .05 500.0 1. .62

(a) Knowledge of input used, b not identified.

Td /Ymax b PP

.5 .005 2. 1. 1.78 1.11

.5 .01 2. 1. 1.36 * j .4

.5 .05 2. 1. .76 ± j 1.5

.2 .005 5. 1. 4.73 1.085

.2 .01 5. 1. 4.2 1.33

.2 .05 5. 1. 1.7 * j 2.9

.002 .005 500. 1. 474.68 8.61

.002 .01 500. 1. 428. 28.16

.001 .005 1000. 1. 949.2 16.3

.001 .01 1000. 1. 855.2 55.7

(b) Knowledge of input not used, b identified.
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In the identification of two poles, noise tends to

generate complex conjugate poles when the two poles

are close together; it results in relatively large er-

rors when they are far apart.

6.2.2 Wideband Four-Pole Transistor Amplifiers Circuit

In this section the discrete iterative approach is applied

to the wideband four-pole transistor amplifier circuit previously

studied by Jain and Osmaai [1979]. The schematic diagram of this

circuit is shown in Figure 6.1. The transfer function of the

amplifier is equal to

H(s) = 8(107)2 (S - 8000(106))

(S + .033(106))(S + .080(06))(S + 25.2(l0)(S+ 1205.1(106))

It contains two low-frequency poles, one mid-frequency pole and

one high-frequency pole. The system frequency response is shown

in Figure 6.2.

The iterative identification procedure steps are as follows

for, initially, the case where no noise is added to the output.

Note that the inner product correlation interval, L, is equal to

10 in all cases. It is supposed that the normalized frequency

band of interest is between .001 and 1500.

1. Excite the system with an exponential with a long time

constant, say, Tc = 1000,

x(nT) = e
- ( 0 0 1 )n T
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Use a sampling period of T=1000, so that T/Tc=l. Do not use

x(nT) as a known in forming the Gram determinant. Identifying

one pole, we find,

b = .00099999

which is very close to the input. It can be concluded that since

the system poles did not perturb the input time constant they are

all larger than .001.

2. Increasing the time constant and decreasing T, excite the

system with

x(nT) = e (l)nT

with T=100. Identify the input pole using (4.16) with

N + I = 1; we get,

b = .02

3. Since .02 is different from .01, it is concluded that sys-

tem poles perturbed the identification of input exponential.

Look for the dominant system pole (the one closest to .01) by

using the same excitation and T but now using the input as a

known in forming the Gram determinant in (4.24) with N + 1.

Find,

P1 = .0328

I
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4. Test by exciting the system with

x(nT) = e - ( Ol ) n T, T=100

and using .0328 in forming the Gram determinant and looking for

the input time constant. Find,

S= .00998

which is close to the input time constant which is, of course,

known. It is concluded that P1 = .0328 is a good estimate of

the dominant pole, that is, the pole closest to b.

5. The procedure is now repeated at each step looking

successively for the next higher frequency pole. The following

results are obtained:

i. Input exponent b = .05, T=20, .0328 used as known,

find b = .0012. Since is not close to b,

another pole is present in the vicinity of .05.

ii. Input exponent b = .05, T=20, .0328 and .05 used as

knowns. Find P2 = .0803.

iii. Input exponent b = .05, T=20, .0328 and .0803 used

as knowns. Find b= .04998 which is close to input

exponent. The estimate p2  = .0803 is thus assumed

to be correct.

iv. Input exponent b = 1., T=1., .0328 and .0803 used as

knowns. Find .9999. Since, b is close to b, we

conclude that the system contains no poles between

.0803 and approximately 3.
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v. Input exponent b = 106, T=.I, .0328 and .0803 used

as knons. Find b = 7.7. The input is perturbed by

a system pole.

vi. Input exponent 10., T=.I, .0328, .0803, 10. used as

knowns. Find P3 = 25.12

vii. Input exponent 10., T=.l, .0328, .0803, 25.12 used

as knowns. Find 10.006. Thus, P3 is judged to be

a good estimate of the third pole.

viii. Input exponent 100., T=.01, .0803, 25.12 used as

knowns. Find 99. 9997.

Hence, the system has no poles between 25.12 and approxi-

mately 300. Note that only .0803, and not both .0803 and .0328,

was used as a known. Since (.0803)(.01) - (.0328)(.01) use of

both results in an ill-conditioned Gram determinant.

ix. Input exponent 1000., T=.001, .0803 and 25.12 used

as knowns. Find 600.

x. Input exponent 1000., T=.001, .0803, 25.12, and 1000

used as knowns. Find p4 = 1204.66

xi. The estimate can be refined. Input exponent

1204.66, T=.001, .0803, 25.12 and 1204.66 used as

knowns. Find P4 = 1205.1

xii. Input 1000., At=.001, use 1205.1, 25.12, .0803 as

knowns. Find 999.87. Thus, P4 is a good estimate

of the fourth pole.
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The procedure was repeated for the cases where the output

was corrupted by additive zero-mean white Gaussian noise with

standard deviation equal to .05 and .5 of the maximum value of

the noise free output. The results appear in Table 6.2.

For comparison, the results obtained by Jain and

Osman [1979] in the absence of noise are also included in the

table.

Note that the identification quality remains good for a

noise standard deviation equal to 5% of the maximum output. The

average percentage error in pole location is .25%, 5.6% and

18.5%, respectively, for a/Ymax = 0, .005, and .05 where the per-

centage error of the identified pole p with respect to the true

pole p is defined as

E(p) x 100

The results obtained using the discrete iterative procedure with

an additive noise of a/ymax = .005 are essentially of the same

quality as those given by Jain and Osman [1979] in the absence of

noise.

6.2.3 One Real, Two Complex Pole Case

Consider a system whose transfer function is given by

HS 2 + .08)
H(S) tS + .1625)(S + .0823 + j .306)tS + .0823 - j .306)
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TABLE 6.2

IDENTIFICATION OF WIDEBAND TRANSISTOR AMPLIFIER CIRCUIT

RESULTS:

a/Ymax P1  p2  P3  P4

0. .0328 .0803 25.12 1205.1

.005 .0324 .0801 25.5 1169.

.05 .0216 .0713 21.05 1053.2

JAIN & OSMAN

.0 .034 .075 24.9 1139.5

TRUE VALUES: pl=*O33, P2=.O8O, P3=25.
2, P4=1205.1
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The system contains three poles: one real pole at -. 1625 and a

complex conjugate pair at -.0823 1 j .306. Note that the imagi-

nary part of the complex poles is larger than the real part. The

simulation results for this case are presented in Table 6.3 for a

noise standard deviation equal to 0, .5%, 1% and 5% of the maxi-

mum noise free output. The identified poles can be observed to

be very close to the true values in the first three cases. Only

for the highest noise level do the identification poles really

differ from the system poles. But, even in this case where the

noise level is high, the results are of reasonable accuracy. The

average percentage error in pole location is, in this case, .26%,

1.8%, 4.4%, and 20.6%, respectively, for a/Ymax = 0, .005, .01

and .05.

In order to illustrate further the performance of the dis-

crete iterative approach and to demonstrate the use of a decaying

sinusoidal input it is instructive to examine the steps used to

obtain these results. It is supposed in this case that the

frequency band of interest is between .01 and .15.

The system is excited by

-n b+Jb2 JnT -(bl - jb 2 )nT
x(nT) = e+ .

For 0=0, the steps are:

- Input T=100, bl=b 2 =.005. Looking for two poles, find

b1 =.0050002, b2=.004999. Therefore, conclude that

no system poles contribute to the output.

- Input T=25, bl=b 2 =.02. Looking for two poles, find

b1 =.019785, b 2 =.019856. Again, conclude that no

system poles contribute to the output.
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TABLE 6.3

IDENTIFICATION RESULTS FOR THREE POLE CASE

(ONE REAL POLE AND COMPLEX CONJUGATE PAIR)

a/Ymax t p1  P2  P3

0. .1613 .082352 .082352

+ j .30607 -j .30607

.005 .1577 i08106 .08106

+ j .3094 -j .3094

.01. .147 .0866 .0866

+ j .31 -j .31

.05 .135 .037 .037

+ j .361 -j .361

TRUE POLES ARE: p1 =.1625, P2 =.0823 + j .306

P3 = .0823 - j .306
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Input T=5, bl=b2 =.1. Looking for two poles, findA2

b1 =.02, b2 =.13. Thus system poles contribute to the

system output. However, looking for five poles, find

.16, .1 * j.1, .0823 k j .306 which contains the input

poles.

Conclude that .16, .0823 + j .306 could be the system

poles.

As a check input T=2.5, bl=b 2 =.2 and use .16,

.0823 + j .306, .0823 - j .306 as knowns. Looking for

two poles, find b1 = .19958, b2 = .19972. Thus, con-

clude that .0823 * j .306, .16 represent the system

poles.

Similarly, for a=.005, the steps are:

- T=100, bl=b2 =.005. Find bl = .00501, b = 00501

- T=25, bl=b 2 =.02. Find b = .0198, b 2  0199.

- T=5, bl=b 2 =.l. Find b = .02, b 2 = .13.
- T=5, bl=b 2 =.l. Use -input .1 + j .1, .1 - j.l as

known s.

Find .17 for N=I; .074 t j .256 for N=2; .18,

.0859 + j .308 for N=3.

T=5, b1 =b2 =.1, use .17 as known, find

= .0656, b2 = .204. Conclude that .17 does not

represent the system poles.

T=5, b1 =b2 =., use .074 + j .256, .074 - j .256 as

knowns. Find b1 = .0828 , b= .107. Conclude that

.074 * j .256 may represent the system poles.
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T=5, bl=b 2 =.l, use .18, .0859 + j .308, .0859 - j .308
as knowns. Find b1 .1008 , = .106. Thus con-

clude that .18, .0859 * j .308 represent the system

poles.

This same procedure applies to the case where a/ymax=.01

The noise level is, however, in this case, sufficiently high not

to permit to properly check for the accuracy of the identified

poles using a decaying sinusoidal input. Instead, using the real

input

x(nT) = e-nbT

the steps are as follows:

- Input T=100, b=.0l. Find b=.0074.

- Input T=20, b=.05. Find b=.035.

- Input T=10, b=. I . Find b=.0198.

- Input T=10, b=.l. Use knowledge of input.

Find .135

- Check inputting T=10, b=.l and using .135.

Find b=.119. Thus, accept p,=. 1 35.

- Input T=2, b=.5 and use .135. Find .0288.

- Input T=2, b=.5 and use .135 and .5.
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Find .037 * j .361.

- Check by inputting T=2, b=.5 and using .135,

.037 j .361. Find b = .21. The identified b

indicates that the identified poles are in error but

is judged sufficiently close to b so that they are ac-

ceptable.

Note that the case treated in this section is more diffi-

cult than the four pole case identified in Section 6.2.1. Al-

though the system only contains three poles, these are not as

readily separable as in the wideband four pole case.

6.2.4 Narrowband Four Pole Filter

As a final example, consider the case where the system

transfer function is given by:

H(S) =
(S+1)(S+2)(S+3)(S+4)

which represents a narrowband filter. The example serves to de-

monstrate the capability of the identification technique when the

effects of the various poles cannot be readily isolated through

use of different sampling intervals.

The identification results are presented in Table 6.4.

Their accuracy is acceptable for noise levels up to 5% of the

maximum system output. The average percentage error in pole lo-

cation ranges from 2.35% in the noiseless case to 13% in the case

where O/Ymax = .05. Two sets of results are presented for

a/ymax=.01. The first set was obtained using a decaying sinu-

soidal input; the second using a nondecaying sinusoidal input.

The identification was performed by identifying one system pole
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at a time. The simultaneous identification of all four poles

would result in complex conjugate, not real, identified poles.

The procedure used to generate the results in Table 6.4 can

be illustrated by examining the steps involved in obtaining the

results for a/Ymax=.Ol using the nondecaying sinusoidal input

x(nT) = 2 cos nwT

= e-jnwT + ejnwT

The frequency band of interest is supposed to be between .01 and

5.

- Input T=100, w=.005. Identify two poles:

.000036 ± j .0049 - i. j.

- Input T=10, w=.05. Identify two poles.

.0013 * j .048 - i jw.

- Input T=5, u=. 1. Identify two poles: .17,

.019* + jW.

- Input T=5, w=.1 and use knowledge of the input poles

j .1. Identifying one pole, find P1 = .59.

- Test inputting T=5, w=.1 and using .59 as known.

Identify two poles: .0038 1 j .098 - i jw. Thus, ac-

cept P1 = .59.

- Input T=2.5, w= .2, use .59 as known. Identify two

poles: .025 ± j .196 * * jw.

- Input T=l. w=.5, use .59 as known. Identify two

poles: .34 * j .37 * * jw.
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TABLE 6.4

NARROWBAND FOUR POLE FILTER

a/Ymax P1  P2  P3  P4

0. 1.019 1.93 3.09 3.96

Io.oi(l) .696 2.01 2.6 4.18

.01 ( 2 )  .59 2.05 2.6 3.95

0.05 .7036 1.815 3.278 3.897

(1) Decaying sinusoidal input.

(2) Nondecaying sinusoidal input.
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Input T=l., w=.5, use .59 and input poles * j .5 as

knowns. Identifying one pole, find P2 = 2.05.

Test inputting T=.. , w=. 5 and using .59 and 2.05 as

knowns. Identify two poles: .015 * j .498 j jw.
Thus, accept p2 

= 2.05

The remaining two poles are found by continuing this

procedure.
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SECTION 7

IDENTIFICATION PERFORMANCE ASSESSMENT

7.1 Introduction

In order to assess the practicality of the identification

technique, it is very important to develop an accurate method of

measuring the quality of the identification results. Two funda-

mental approaches to this problem are possible: a measure of the

accuracy of the identified parameters (poles and zeros/ residues)

or a global measure of the difference between the impulse respon-

ses or transfer functions of the identified and actual systems.

The choice of the quality criterion is, of course, dictated

in practice by the purpose to which the identification results

will be used. In a control systems application, the accuracy of

the identified parameters may be very important in the design of

a compensator. In a speech synthesis system, on the other hand,

an accurate identification of the impulse response of the synthe-

sis filter may be sufficient.

Note that the parameter accuracy approach is much more re-

strictive than the global approach. An identified pole can only

be accurate if it is close to the true pole. The representation

of an impulse response as a function of poles and residues is not

unique, however. An identified impulse response may be accurate

even though the underlying poles and residues are quite far from

the true values.

The purpose of the linear system identification carried out

in this effort is to serve as a first step to the characteriza-

tion uf the nonlinear transfer functions of the system. A final

choice of a quality criterion for this problem cannot therefore

be made until the impact of this choice on nonlinear transfer

function identification is analyzed.
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The present effort was limited to the identification of the

poles of the linear transfer function. As such, only the par-

ameter accuracy of the identified poles could be determined. A

choice between parameter and global accuracy measures depends on

their respective impact on the identification of the nonlinear

parts of the system. Therefore, a choice cannot be made at this

time and only the principles of the parameter and global accuracy

measures are discussed in the following.

7.2 Parameter Accuracy Measure

A reasonable parameter accuracy measure is the ratio of the

difference squared between the true and identified parameter to

the true parameter or the percentage error in pole location.

Thus, if p and p represent, respectively, the true and identi-

fied values of a pole, the parameter accuracy of p can be de-

fined as:

pl2 = p- (7.1)

and the percentage error as:

P(p) = J x 100 . (7.2)

Note that in the preceding, the error measure in (7.2) was

used. Such an accuracy measure is easy to implement during the

simulation testing of the identification procedure. It has two

major disadvantages, however. If the order of the system is

erroneously determined, it does not readily permit a measure of

the effect of extra or missing poles and residues. Secondly, in

the practical application of the identification technique the

true parameter values are unknown. Consequently, such an ac-

curacy measure cannot be applied.
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7.3 Global Accuracy Measure

The standard global accuracy figure measures the distance

between the impulse responses of the true and identified impulse

responses normalized with respect to the total energy in the sys-

tem impulse response:

Ga(h(t)) = I lh(t) - h(t)I2dt/ j Ih(t)I2dt. (7.3)

Equivalently, the accuracy figure in (7.3) can be expressed in

the frequency domain as

Ga(h(t)) = Ga H(f)) = H H(f) 12df/ H(f) 2 df. (7.4)

Such a global accuracy figure is only suitable during the simula-

tion evaluation of the identification technique. In practice the

true impulse response or frequency response are not known. The

true system response can be measured but not to an impulse since

a perfect impulse cannot be generated in practice. Measurement

of the true frequency response would not be practical.

The global accuracy measure in (7.3) can, however, be read-

ily modified to account for a non-impulsive input used to measure

the true system output. This is accomplished by weighting the

performance measure by the test input g(t). A practically im-

plementable test input which is as close as possible to an im-

pulse should be chosen. Note that the test input should be dif-

ferent from the input used to identify the system. Consequently,

the weighed performance measure is defined as:
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cc~

f [[h(t)-h(t)] * x(t)] 2dt

Pah(t)) -= _ _

f[h(t) * x(t)] 2 dt

(7.5)

f jH(f) - ;(f)1 2 IX(f)1 2df

J IH(f)1 2 1X(f)1 2df
-m4:

Equation (7.5) can easily be modified to measure the performance

of a sampled sygtem:

2 [(h(n)-h(n)) * x(n)J 2

pa(h(n)) = n:--m
a [h(n) * x(n)] 2

n

I H(e~w)H(ejw)12 
I 2 

(7.6)

fI H(eJW)J 2 IX(ejw)X 12dw

where X(n) is the sampled version of x(t) and w is the

frequency normalized with respect to the sampling rate.

As discussed in Section 7.1, a definitive choice of a per-

formance measure must follow an analysis of the effects of linear

system identification errors measured in a parameter or global

sense on the identification of the nonlinear parts of the sys-

tem. It should be noted that if a good global performance mea-

sure is sufficient to insure adequate nonlinear transfer function

identification, a question as to the appropriate linear system

identification technique arises since a good global performance

measure does not necessarily require that the identified poles be

identified with an equally good rms accuracy. Then, it may be

sufficient to identify a system frequency response which is close

to the true frequency response and, from it, derive the system
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poles and zeros. The linear system frequency response can, for

example, be estimated from steady-state sinusoidal measure-

ments. Such a technique, although potentially requiring more

measurements, should be more resistant to noise than the tech-

niques discussed in this report which first estimate the system
poles and zeros.

To illustrate the difference between the global and param-

eter accuracies and the relation of these measures to the identi-

fication technique, consider the following example. Suppose that

it is known that the transfer function of the system is given by

H(s) = (7.7)

that is, that the system has no Uinite zeros. It is desired to

identify H(s). Suppose that the identification is based on a

non-iterative technique and that the poles of H(s), that is, the

roots of P(s), are identified as the roots of the polynomial of

the form (3.11):

M NI1 1 / 2 a 78M k - I ([G 2N+l]i+l,i+l)I/ 0 .(7.8)

i= 0

This implies that P(s) is identified as

N N-i /2 (79)
P(s) = s ([G 2 N+Ili+li+l)(

i=0

The relation between the global and parameter accuracy measures

is now apparent. The global accuracy depends on the difference

between P(jw) and the polynomial in (7.8) with X=jw. The param-

eter accuracy depends on the distance between the roots of P(s),
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and those of the polynomial in (7.8). Note that the two measures

are equivalent when one pole is identified at a time, that is

when N=l.

In order to ensure a good parameter accuracy in the general

case not only must the polynomial in (7.9) be accurate in a glo-

bal sense but the coefficients of the polynomial (the Gram deter-

minants) must also be accurate. Note that a good global accuracy

can be obtained even if the estimate of the number of poles is

wrong especially if the estimated number is larger than N. Note

also that the estimation of P(jw) is essentially spectral estima-

tion. It follows that an accurate identification in the global

sense is much easier to perform than an accurate identification

in a parameter sense. However, the adequacy of the global meas-

ure in ensuring an accurate nonlinear transfer function identifi-

cation is difficult to quantify.
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SECTION 8

CONCLUSIONS

The starting point for our effort was "the pencil-of-func-

tions" transfer function identification method originally pro-

posed by Jain [1974] for the identification of linear systems and

later applied by Ewen [1975, 1979] also to the identification of

nonlinear transfer functions of a circuit. Because of the limi-

tations and difficulties encountered by Ewen [1979] in the pract-

ical application of this method, the objective of the present

study was to devise a modified approach to system identification

that would lend itself more readily to actual laboratory measure-

ments.

As a result of this investigation, the discrete, pencil-of-

functions identification (DI) method described in Chapters 4 and

5 was formulated. Its main characteristics are:

- Completely discrete formulation directly applicable to
sampled data.

- Selective use of the knowledge of the input poles to
test for regions where poles are present and to deter-
mine the reliability of the identified poles.

- Iterative search for poles starting from the lowest
frequencies and progressively moving up to higher fre-
quency poles with each iteration. Adjustment of the
sampling interval T to match the pole being sought.

- Use of previously identified poles as knowns in the
set defining the Gram determinant during the identifi-
cation of additional poles.

- Use of time shifts to create new members of the equiv-
alent to Jain's pencil-of-functions set.
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The advantages of the discrete iterative approach can be

summarized as follows.

- Repeated integrations are not required since time
shifts replace integration.

- The accuracy of an identified input pole when it is
far from system poles gives a measure of the best ac-
curacy that can be expected.

- Regions where system poles are present can be deter-
mined iteratively.

- The number of poles to be identified is determined by
stopping at the highest significant pole as opposed to
iterative predetermination with a Gram determinant or
spectral analysis.

- Re-identification of the input poles while using the
identified poles as knowns gives a measure of the ac-
curacy of the identified poles.

- The use of identified poles as knowns is especially
useful for wideband systems.

- Each stage of iteration .requires the measurement of
approximately only twenty output samples.

- The highest required sampling frequency is equal to
the Nyquist rate.

The discrete iterative identification (DI) technique was

tested by simulation for the case where the output signal is cor-

rupted by additive noise. The results of these tests were pre-

sented in Chapter 6. The identification was successful for both

narrowband systems containing up to four closely grouped poles

and for a wideband system when output noise standard deviation

levels did not exceed 5% of the noise free maximum system out-

put. Additive output noise level can generally be decreased to

the desired level by averaging out sample values in repeated ex-
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periments, but an individual sample has to be matched by the num-

ber of bits in the A/D quantizer.

Based on these results, it is concluded that the DI method

should be capable in practice of identifying systems containing

separate groups of four or fewer even closely packed poles in the

presence of additive output noise whose standard deviation is of

the order of 1% of the maximum system signal output. If the out-

put noise is mainly due to quantization, this should permit use

of 9 or 10 bit quantizers. As noted above, the hiqhest required

sampling frequency is equal to the Nyquist rate. This should

permit a relatively straightforward implementation provided we

are not dealing with a very high Nyquist rate.

These results compare very favorably with those obtained by

Ewen (19791 who was able to apply his method to identification of

only a two pole circuit and who concluded that for his method, a

two pole system required the sampling rate of 4 to 10 times the

highest frequency of the passband of the system; that is, two to

five times the Nyquist rate, and an A/D converter with a resolu-

tion of not less than 16 bits. Furthermore, the identification

of a circuit containing a larger number of poles would have re-

quired an A/D converter with a greater resolution. Because 16

bit (or higher) A/D converters cannot be clocked at high rates,

Ewen's method was correspondingly very limited as to the band-

width and the order (number of poles) of the system which could

be identified. Moreover, the method had no special provisions

for the identification of wideband systems to take advantage of

the large spread in pole locations even in the cases where the

total number of poles was relatively small.

The discrete iterative technique described in this report

has the following comparative advantages. TY,. DI method is more

noise tolerant and this permits the use of an A/D converter with

less resolution. Since the availability of high speed 10 bit A/D
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converters (output noise less than 5%) is much greater than that

of 16 bit converters, the DI method can be employed at higher
sampling rates. This characteristic added to the fact that the

present technique requires a sampling rate equal to the Nyquist

rate implies that the DI method will permit identification of

higher frequency circuits. For example, if the fastest commer-

cially available 16 bit converter were of rate 125 kHz, the maxi-

mum bandwidth of a system which could be identified using Ewen's

method would be limited to 125/10 or 125/4, i.e., 10 to 30 kHz.

If, on the other hand, a commercially available 10 MHz 10 bit A/D

converter were used with the discrete iterative approach, the

bandwidth of the system could be as high as 10 MHz.

The advantage just cited appears to offset the primary dis-

adlantage of the DI technique which is that because of its itera-

tive nature, more input cases are needed. The sampling rate is,

however, no greater in each case Adan the Nyquist rate. More-

over, the iterative nature of the method and the selective iden-

tification of the input poles as system poles permit the identi-

fication of wideband systems without the requirement that the re-

gions where the poles are located and the number of poles be

known a priori. In defense of iteration, it should also be

pointed out that the first stage of the Ewen procedure, which is

the determination of the number of poles, is itself also an iter-

ative procedure. Furthermore, there is little guidance to the

experimenter what sampling rate should he used in that first

stage.

Note, finally, that the system identification approach dis-

cussed in this report is not being presented as the ultimate sol-

ution for all circuits and may still be impractical for the case

of the most complex, widest-band circuit. The DI method is, how-

ever, another step forward, hopefully significant, for identifi-

cation of circuits with relatively few poles and hopefully con-

tributes some enlightment for the analysis even of circuits with

many poles.
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PP7:INUC .NICC

C
C ~ ~ t MAN-0DA

INLD Xxv 21.0 MN
C

CALL INPUT
CALL NOkht
D0 600 MSAVE-MMM-PISI0'
1-0 zoo0 kAM) Tk-)fnANF

Xxt).IxJ(pAW)TR'2-II
IXX (2)-I XXV(kANF'PI)
CALL NOISE
Mm- MSAVE
MI-MM-I
WRITE (4.2000) MM

2000 rAAC)....3
CALL hATAXI
IF (PAT2.NC.0) CALL MATRX2
CALL CO9CTRt
CALL VOLES(IER)

500 CONTINUE
?MMSAVE
MY7MM-1
IF (RAIV. GT. I) CALL AVERA.

600 CONTINUE

CALL EXIT

EN!.

SU3'ROUT INE INPUT

PYTE FNAME(40)
COMPLEX ExI.EX2.FACT.RI.FCTF2,SUMI.SUM2,SUM3
INCLUDE 'I!.CNTC.CMN'

C
Tr('C 9.'INV*Ul FILENAME:*
ACCEPT 1100.FNAMC

))ft FORMAT f40A))
Fw^MC( 401'0
OrEN(tiNI t ) -NAME -NAME.-TYPE- 'CL!"'

RCA!, 41,3000) Nl4.l1r.P.K.mmm.mS.TOr,7SwrT
3000 VohmAI(20I6)

READ (2.2000) MUI.f'CLIAl.SIE'MA
2000 FOfkMA7l2orI6.)

MU2.CONJG(MUI I
AEAD ll2.'000) 4OMEGA(l).I1.-NN)
REAl' 42.20'0) 14)I)&N
RCA!' (1.100O0) MAT2.IOI.EF,A%N.JLIA
Ir IRANr.Gi.0) RCA!'I (1.1000) Ix21)R.r2
IF (JOUAN.Ol.0) kEA' (2.Z000) 4'I,..OSN

CLOSE fUNII-2)
I-)IVEF4JfUANt2
IF 4hMMLY.1) MMM-I
IF (PMSIOP.Ly.Mmm) MSIOP-MMM
WRITE (4.4000) NN.F;.KK.MNM.MSTOP.ISHVT

4000 rORMfIA T(Ix,'',13/).'r.',I5/)X,'x.'14)x.IA )Nr.M'I'
1 /X.'FINAL M- '.2., 'SHIFT F'A9,AMCIEft.'I3)
WJRITE 94.4S00) ML'),MUZ.lOCLIAT.SI.MA
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31,o0 rOT2.'M .. 2 .(F 6 7... .7.2yl.

6000 U0R1 I 4600 I[2)I2.

;1 :MAY '.Cr.0; (JRITE :4.600)jr p A12.MCo) WR21E (4.6600)

6800 r0kAT( S., ro )

IF 41011EF.NC.0.AmI..JDUAw.E0O) WRITE (4.7000)

7100 FDRMATCIX.' IINC Y(m.2.N I ).X2(N (.)~C)

7200 2 r;.I y Z~)-2w,

IF (RnAN.E.) RITE (4.900) JUM

IF (AANF.NC.0) UR;I1E (4.VI00) RAN.(2XXV().I-1.AANF,2)
vOOC FORKAl) IX. 'Nol INVU7 TO F&AU1'OD NUMPEA1 GENERA7P.')

C'100 F0RMAT(SX.12.' lNrLI1s T0 RANvom NumIEA CENEFATOR:'

((7-KK-I

CALCULATE X(N).YH(N)

X(-%. )IPELTATIN

XI (N)-EXPIEXII
X2(N).CXP CX2)

P UR2TE (4.1003) N.X3(N).X2(N)
02002 F0RA(X.X(13.'.'.4.7'.',C14.7.2XE4.7.'.,1d.7)

SUI3(0 .0.2
SUM2-0 .0.)O
SUM2-(O. .0.)

00 100 1.3.NN
FACIR3.R(I)/(mU%-OMECA(I)l

EXI-t-, . )snMEC.A(1 )wI-EL7TI

SUP, I. SUMI4(FAC1M4rAC7r2)3(XPCEX2)
SUMi2-SUM24FACIR)
sum3.sufl34VAC7R2

Soo CONTINUE
YH(N)-SUMI-(X2(W)t5UM2)-(K2(NIPSUM'I)

WRITE (4.2002) M.YMIN)

200 CON71NUE

IF IJOUAR.ED.O) 00 7r~ 700

C IN17 ARRAYS YYS AND, LAMDAS FOP, AVERAGING
700 1 10 770 3-3,13

LAMDIAS(lI)-40. .0.)

7D0 C0 0 J-1.3

770 CONTINUE

RE7IUkiN

C
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C

CO'WLCX 2.CI
INCLUDE 'IDENIC.Cmme

C
EXr-f-I. )I W( I )I VEL TATI W
Z-EXPEx)
2-ZUIO./ZDIVdI)

C
SUJ'ROU1INE NORM)

C
comrLEX 2
INCLUD'E 'It'ENTC.CiN'

C
C FIND. MAX Y

XXVI-APSIftEAL((I))
Xxt-2-APS I kEAL(X'f I)))
YYI-APStR[AL(XN42 1 U

1-0 150 MN.,K'
TYTI!-APS(i&EAL(yN(N)) I
IF 'rYDTi.G YVYD) YVI..YY[,T

150 CON7INUE
rVo 200 N.21PP

X2(p)-XIN)sl 1/XxI,2
YN(N).YwNNISI.yI.

S W LI TE (443001 ) W.XI IN) N.X2(m) N.YM(N)

200 CONTINUE

IF (JOUAN.EO.0) GO TO 900
DO 500 ).1.JOUAN

Z-EXFf (-I. * i( I I'DELTAT)
ZVIU(I ).AIS(kEAL4ZU)
DO0 300 W.2,IKK

2-VXP( C-3 - *WIIl)* r.LTATIN
ZZP7.A&S(REALIZI I
IF IZZI-T.Ill..IU4I I) ZPJUSI).ZZ.T

300 CONTINUE
:100 CONTINUE
900 RETUR~N

END
C

SUPR.OUTINE NOISE
C

INCLUIE 'IjsENTC.CMN'
C

no' 100 N.pp

CALL. CAUSS(Y.JJISE.SIGriA.C.IXXI
V(Nl-YNN 4 YHOISE

C' WRITE (41,03) l yNO35.N.V4N1)

100 CONTINUE
RE TURN
E Pit
SUPROUTINE MATflXI

C
-3- COMPtLEX TI.VJSUMI-r*E7

INCLUDE '1IJENTC.CMiN'
C
C FILL IN MATRIX

IPREA'K.MM 4 1 - 101r,? - jouAN
DO A00 11.-mm

DO 300 J.I.Mm
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I -ZL I:) prit^ ) 00 10(1 0
I FI £OTEr -10-0-0&.2-1.ZI- pIFEAk41 1 0010O50
IF E2.CO.IPFCEAK) YZ*12EN)
IF (I EDO. 144EAKI1) T2.XcN)

so ~ ~ 0 10 P0miu~

CALL GETZ(Y2.11.N)
so 00 J*YN4.J-2*]Su51)

I2F (J.LI.IPREAK) 00 To 320

IF1 t0IOZ*E.E0. OR-J-01 -I FRE AK412 I0s '02 00
Ir (J.EOIPREAN) 'fJ*XlN)
IF (J.E0.I REAK4 3 YJ-X2(M)
00 10 120

100 JJ-j-MM4jOUAN

CALL GETZ(YJ.JJ.N)
220 SUM3-SUM14Y)IC0NJO(YJ2

I' IWRITE f44.3001) 2.J.N.y~j.SUMl
D1002 FOAMAT(IX..,2,2.' .,..12..* N.,.13.

200 CONTINUE
YYtl2.J2.SUMI
YY(J. 2 -cONJOISuMI)

C SAVE VALUES FOR AVERAGING
YYS(2.J).YYS(I,J2 4 YY(Zlj)
IF (1.NE.J) YYStJ.Z)-YYS'j.lZ 4 yytj.12

l0o CONTINUE
400 CONTINUE

DlO 555 1*.1"

1121 FOFMATJIX.4t524.6. %52j4.6)2
5S % LONTINUE

CALL EEIRM(-I,1E72
WRITE 44.3000) V.ET

1000 50RM14XGRAMPZRiIAII.2.,..Ea
RCETIURN
END

C

SUPROUT INE MATAX2
C

COMPrLEX P'ET
INCLU.E ']Z.ENlC.CPN'

C FILL ZN PIAC.NAL WITH LINI.2ASEI, ELEMENIS
VALUE-kt. £SIGMiAI22)
IlNl..MM
2f 200DEF.N[.02ZNPM-

Z'0 100 I2..EN'

l00 COWT INUE
Pl !1 5 I.2.Mm
0 WRITE (4.11112 11,2...M
113311 FORMATCIX.4(F14.6.','.r,4.6,1
1,555 CONTINUE

CALL ZEIAM(-3.t'E12
WRITE (4.2000) PET

2000 FORMAICIX. GRAMP ['El. UNP2ASCP N'AG ELEMENTS 2..,E41
RETURN
END

C
-~ SUPPOUTINE COFCIR

C

COMPLEX SUM2.AVO
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C LOOP FOR CarACIOR

D0 5,00 I1.Mpq
CALL pETftf(I.C~rACIEJJ)
UF.11C (401000) I-COFAC"(

1000FOMjj.CFCD4.3.'E47

500 CONTINUE U)SC4~AIl

^Va.SUM I fIM
WRITE (4.2000) AVG

2000 F0AMA7(lk-'AwEA0 or corAcloRS ,(2dA.7.,. EId.7)
RE IURN
END

C
SUPROUTINE POLESCIER)

C
INCLUDE '1t1EN7C.CmmN

C CALCULATE C0(F Or POLYNOMI1AL FROM COrAC7OftS

C ADJUS
1 

MmR AS NECESS^r
MF.MM-I1rEF-j(pUA&l
Ml wmY101-EV-JOUAN

20 DO 100 I.0,MT
C0Cr Is-COrAClIc 12

IF lCOEFfE).ED.l0..O.)) GO TO 50

COEF(2).(SORI(COEF(1)))'((-2"'J)
50 CONTINUE

p WPZTr 64,)003) ICOEr(l)

100 CONTINUE

CALL. AOOTCP(COErCor.M.LAMI'A.I(R)
If (IEAJNE.0' GO 10 300

A.FIEAL 4LAMT-A( 2))
F.AIKAGILAMZ-A( ))

POLE) fAINC v/A) 2,r.CLIAI

WRFITE( 400C-0) JL^' tA( I I.POLCElk POLE)

1000
I 2X.1 PMOER-'.El4.7.' POLEI..EI4.

7
)

LAFIIAS(1),LANI'AS(I) 4 LAMIVA(1)
200 CONTINUE

00 T0 900
300 IJAITc (4.:000) TEA

2000 FflflA743Y, . rflVO& ON FIDOTCr 1,31

C FROM NOW ON USE M7 INSIF.AD or mm 1.ECAUSE ONLY M-1 ROOTS

900 CONlTINUC
I.ETUF4N

C
SUPRAOUl INC AVERAG

C
COMPLEX PET
INCLU*E *2UCENIC.CmN'

C
MIT.my2 or-rCp.DUAw
DO 100 1-1041.7

LAI~bAf 1 ILAMOASIR 2/P.ANV

.5- A.AEAL(LA~tIA(I)l
I..A1MAGILAMPIM )

WRITE (4.1000) I.LAMZ-A(1 ).rLERUP0LC

2000 FORhATlX.A^vC M,(1.,U..l.
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C
DO 750 IIM

DO 200 J.2.Ntm
YY(J ,j1-YYS(IJ/RNr

200 CONT INUE
250 CONTINUE

WRITE 4OT( -1,(1 .7 E14.7)J--K)

555 CONTINUE
CALL I.CTrft(-I.LIET)
WRITE (4.2000) PErT

21000 rOAMATUJ%.AVG CRAM DCTERMINANT .ISX.E4.7.','.CI4.7l
CALL COFCTk
CALL POLES

EN!'
SUPROUT)NE IE1Rm41rL^G.DET)
COMPLEX tEI.1ETT(2)
INCLUDE 11.CENTC.CKN'

C
IF EIrLAG.LI.0) GO To 600

C MOVE MATRIX FOR COFACTOA I INIO WOkKING MATRIX
ly-I
DO 200 I1304

IF fly.ED.IFLAG) IY-IY41

DO 100 J.1,MT
Ir 4JY.EO.IrLAG) JY-JY41
WTYTI IJ)-YY( 1I.Jy)
JY*JY, I

100 CONTINUE
IY-1Y4 I

200 C4INTIMU'

Go TO 700
C DOING WH4OLE MATRIX-MOVE 1T ALL
400 IM.Mm

DO 650 I-1.Mm

too 630 J.1.MM

630 CONTINUE
450 CONTINUE
700 CONINUE
1. UVC)TE (4.10031

1-1001 rOAMAT13X.'I-EUkM MATRIX')
to DO 7t5 ]-Join
t. WRAITE 44.1112) fUYY(I.J),J-I.IM)

0755 CONTINUE
CALL CCCOuyT.)13. I. I!UT.RCON.COr)

CD TYPE &' MVISED MATR4IX'

CT' DO 756 3-1-IM

C9. JAhTc '4.1111) Y(IJ.IIM
CK'756 CONTINUE
v URITE (44.1121 NCO"
Dl3332 1FOAMATflX.*ftCON. '-EIE.U)
cc IF (.AO)E~. Go 7O 600

If 4RCON.EO.. GO TO 600
CALL CGEDIChYT,13.IM. IryVITTCOV.10)

-4. CX-REALIK.CII(2))
[ET-OCYT ElISCIC. 'CXI

it N4TE (4,13331 DE14~f1IfET?,.I'ET
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D00 FOR?Ali16C1 PET TO .
900 RETUR4N
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)6-2Ur 7l:.2PENTC.Chm
C COMMON FORn 3DENI PROGRAM A276
C INPUT

INTEGER4 NN.PP.K.MMMSTOO.MAT2.,SF.OPCr
INTEGER RAA~rJQUAW.lIXXJ(,O)
AEfjL SELTAl.SIGftA
COMPLEX MlI.OhEGA(1o3.pt(2O).U(302

C CALCULATED
INTEGER M-MT.KT. IXX(2) .IPUl1 4)
REAL 2P1U(iO)
COMPLEX MU?
COMPLEX XS020-2020.d:%0,HC20
COMPLEX YY(13. 3) .YYS(13.13).COrCT( 13).WY(13.13)
COMPLEX LAMrA(13I,LA~mIAS(13).COEF(O *I.).COF4i4)

C COMMON
COMMON WK F*P:KMMmM5TlOP.hAl2.ISmrI
COMMON IO;EF RAr , JOUN, I XU
COMMON Mnm.M.KT,IXX,IPIT

COMMON VEL7A7.SZGMA,20V
COMMON M3 .OMEGALF4,UMU2
COMMON X) .X2:y.Y..YCYYS:COVACT.UYT
COMMON L^AIA L LMIA * CEF *COr
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MISSION'
Of

Romn Air Development Center
RAVC ptana and executea &eAeau~h, devetopment, teat and
a6eteeted acqui.tion ptog4a6 in auppo-'tt 04 command, Cont'totCommunication6 and In-tettigence 1031) activitie.&. Technicoat
and enginee~.Zng Auppo% within ateau 06 .technicat competence
i,6 p'tovided to ESP Pxogytam Og~ZceA (P06) and othelt ESV
etement6. The pwtincpat .technicat m66ion aueaa ake
commwl.caton, etectLomagnetc guidance and contt, 6&~-
vei 'Unee o6 g/wand and aeAozpace object6, intettigence datacoutecton and handting, injo'unation ayaten technot.ogy,

iono-6pheAie p~opagat&on, zotid 6tate heienee6, micAowave
physicAs and eteectwnc 'tetiabitity, mainainabtty and
compaibiLtity.




